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Analysis of a Three-Dimensional Arbitrarily

Shaped Dielectric

or Biological Body

Inside a Rectangular Waveguide

JOHNSON J. H. WANG, MEMBER, IEEE

Abstract—This paper presents a method for the analysis of three-dimen-
sional arbitrarily shaped dielectric obstacles inside a rectangular wave-
guide. The numerical computation involves a dyadic Green’s function
containing a double infinite series, which is evaluated by a partial summa-
tion technique,

I. INTRODUCTION

AVEGUIDE obstacles and discontinuities, includ-

ing the dielectric type to be discussed in this paper,
are long standing problems in electromagnetic theory.
Many of them, essentially two dimensional, have been
solved and were summarized by Marcuvitz [1]. The gen-
eral three-dimensional discontinuity problems, however,
remain unsolved in spite of the advent of modern high-
speed digital computers and the method of moments [2]
which permit treatment of problems not solvable by exact
methods. Upon reviewing the status of numerical tech-
niques for passive microwave devices, Silvester and
Csendes [3] observed in 1974, “not a single truly three-di-
mensional solution has been published” for waveguide
discontinuity problems. This statement is apparently still
valid today.

This lack of published research activities in three-dimen-
sional waveguide discontinuities has been in many cir-
cumstances due to the deficiencies of the Green’s func-
tions in the waveguide region. A dyadic Green’s function
for the rectangular waveguide was presented by Tai in
1972 [4] and later revised by the same author in 1973 [5].
Tai’s expression includes a double infinite series summing
over the contributions from all the individual waveguide
modes. Recalling the simple expression of the free space
Green’s function, one immediately recognizes the greater
complexity in the waveguide case.

This paper presents a successful use of the dyadic
Green’s function in the analysis of the electromagnetic
problem of a three-dimensional arbitrarily shaped dielec-
tric or biological body inside a rectangular waveguide. In
the process, the extremely slow convergence of the double
infinite series in the Green’s function had to be modified
by means of a partial summation technique. The im-
mediate application of this new analytical technique is in
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Fig. 1. A three-dimensional arbitrarily shaped heterogeneous dielectric

body illuminated inside a rectangular waveguide.

microwave waveguide enzyme inactivation in neuro-chem-
ical research [6]. Extension of this technique to highly
conductive obstacles is feasible but may require modifica-
tion of the volume integral into a surface expression.

II. THE INTEGRAL EQUATION AND THE DYADIC
GREEN’s FuNncTION

The problem to be considered is shown in Fig. 1, in
which a three-dimensional arbitrarily shaped heteroge-
neous dielectric or biological body is electromagnetically
illuminated in a rectangular waveguide. The dielectric
body has a permittivity distribution of e(r), where r is a
positional vector. Outside the volume ¥ occupied by the
dielectric body, the permittivity is homogeneous and is
denoted by ¢,. Free space permeability u, is assumed for
both the dielectric body and the medium outside V.

The time function e 7', where ¢t and « are time and
radian frequency, is used in all the equations in this paper
for ready comparison with Tai’s work [4], [5]. Since the
¢’“" convention is perhaps more widely used, a comment
on the conversion of the equations to this convention is
justified at this point. For the ¢/ convention, one merely
changes to —J all the /’s appearing in the equations in this
paper.

In Fig. 1, E(r) denotes the electric field intensity at r
and E’(r) denotes the field intensity at r with the dielec-
tric body replaced by the medium e,. The scattered field is
defined as

E‘(r)=E(r)—E'(r). 1

The volume equivalence principle can be shown to be
valid in the bounded as well as the unbounded space. As a
result, the problem as depicted in Fig. 1 is equivalent

everywhere to a homogeneous waveguide with €;, py, and
with volume current density

J(r)=—jwle(r)—¢ ]E(r). 2)
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It follows from the theorem of superposition that the
electric field radiated from J(r) is equal to E*(r). There-
fore,

E*(r)=japo | G,(r)d (r) V' 3)

where G, is the dyadic Green’s function of the electric
type and
G, (rr)= 228 (rr) (4)

0(" r) k1
where 8 denotes a three-dimensional Dirac delta function,
Z denotes a unit vector along z, k,=wVe, gy, and G, is
defined below. The term involving & had not been in-
cluded in Tai’s earlier work [4] until 1973 [5] and has been
a subject of recent discussions [5], [7], [8]. G,, was not
explicitly expressed in the literature except by Rahmat-
Samii [7]. However, Rahmat-Samii’s expression has a
number of errors in the print. For the clarity of the
present discussion and the convenience of future refer-
ences, it is desirable to present it in the following long
form:

eO(
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where
o = { 1, ifn=0
012,  otherwise
r=field point=(x,y,z)
r =source point=(x’,y’,z")
l(k% - k3)1/2|7 if k,,,, is real
A2~ kf)l/zl, if k,, is imaginary
where

s _(mm\? (nm?
e=(T )+ ()
Equations (1)-(4) can be manipulated to yield the
following integral equation:

J(r)
jw[e(r)—e }
Lo (r)2
* Jwe(n)

where J, is the z component of J. The unknown J in (6)
can then be solved by the method of moments [2] which
transforms the integral equation into a set of linear equa-
tions readily solvable by means of a digital computer.

Jeop fycz()(r, ) () dV'+

—E'(r) (6)

IIL

Although there exists a number of methods by which an
integral equation can be solved numerically, the complex-
ity of three-dimensional geometry can hardly tolerate fur-
ther complication in the computational process. Even in
the much simpler case of plane wave incidence and un-
bounded free space, only point matching together with
rectangularly sided cells has been attempted for the
volume type of integral equation [9]. Fortunately, this
unsophisticated process has been found to be capable of
producing good numerical results. Thus point matching
with rectangularly sided cells is employed in the present
analysis.

The volume ¥ occupied by the dielectric body is first
divided into L equal rectangular-sided cells AV -AV,,
each of which has constant dimensions Ax, Ay, and Az.
The electric field, assumed to be uniform inside the /th
cell, is designated as E (r;), where r; represents the center
of the /th cell. The equivalent current in (2) can then be
expressed as

SOLUTION BY THE METHOD OF MOMENTS

L 3
J(r=2 X JI'Bf(r) (7
I=1k=1

where B/ is a basis function defined as

Bf(r)=4,P'(r), k=1230rx,y,z (8)
#, in (8) denotes a unit vector, and
Pl(r)={ 1’ forrin AI/[ (9)
0,  elsewhere.
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The weighting function is defined as

Wi(r)=8(r—r)a, p=123. (10)
The scalar product between f and g is defined as
(£8)= [ fgao (11)
14

We can generate a set of linear equations by first
substituting (7) into (6) and then performing a scalar
product on the resulting equation with the weighting func-
tion of (10) for p=1,2,3 and ¢g=1,---,L. This moment
generating procedure leads to the following set of equa-
tions:

3 L

> 2 JkApi=cr,  p=1,23;¢9=1,---,L (12)

k=1 1=

where

cri=—E'(r,) (13)

AfF (o) g o - 85 (14)
= jw +
] oy lq ]OJ E(rq) € ( )

0f in (14) is the Kronecker delta, being 1 when p=¢ and 0
otherwise, and

(15)

where G4 is the (p,k) component of the dyad G, The
integration in (15) can be carried out to yield

Q;{;’f:j;VGgg‘ r,¥)dv’
!

€onom

7k = ———IQFPk 16
qu 2ab k2 nzo mzo mn Q ( )
where
Frk=[the (m,n)th term of G5 |-e mlz=2l  (17)
_ 4ab_ . nrAX, = maAY,
Q= nmi s 2a s 2b (18)

and [ in (16) depends on the index pk. For pk being (1,3),
(2,3), (3,1), (3,2), where (1,2,3) corresponds to (x,y,z), we
have

2 . Az . Az
+ TheniZ, — 7| —_— = P
. _kmne sin (kmn 3 ), ifz,=2z+ >
Zz—e/"m"“'/ *sin [ k,,(z,—2)],  otherwise.
(19)
For other pk indices, we have
{ cos [ K (2, 2) |t/ — 1},
Az Az
I= ifz,+—2—£>zq>z,———2—l
Az .
k2 sin ( kmn—z—l)ef"m"Vq Al otherwise.

(20)
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Fig. 2. Comparison of convergence between direct truncation and par-

tial summation.

As can be seen in (14)—(20), the matrix element Af/
involves a double infinite series which does not converge
rapidly unless |z, —z| is large. When p=g as is the case
for the self cells which are the diagonal matrix elements
|z,—2|=0 and the series convergence is extremely slow.
As an example, Fig. 2 shows that no sign of convergence
is exhibited even after 140X 140 terms are used in the
summation. Thus the computation of the matrices can not
be carried out by a simple truncation of the series.

This computational difficulty can be surmounted by
direct summation of the part of the infinite series which
contains terms nonvanishing with increasing M and N.
This partial summation transforms a matrix element of a
double infinite series into a single infinite series or even
into an expression of closed form, which can be truncated
for computation. Fig. 2 shows that convergence is
achieved with about 20 X20 terms for the partial-summa-
tion technique, which is significant improvement over the
direct truncation method. For most off-diagonal mairix
elements, direct truncation is satisfactory because of the
predominant influence of the exponential terms with the
argument of jk,,|z,—z]| or jk,,Az/2 as shown in (19)
and (20). As a result of these exponential terms which
rapidly decrease with m and n, off-diagonal matrices with
nonvanishing |z,—z,| can be computed with a finite series
truncated according to a precision criterion established by
the value of jk,, |z, — z]|. Depending on the value of |z, —
z;|, approximately 16 X8 up to 21 X 12 terms were used for
m and n in the examples reported in this paper.

The partial summation technique is tedious but
straightforward. The portion of the infinite series which
consists of terms slowly convergent with m and r are
summed by means of the following formulas [10]:

§ sinkx _ m7—x

% > [O<X<27T]

k=1

k sin ka _ sin ha(m— x)

v
k=1 k*+a* 2

g , a?>0, 0<x<2xw
sin ham

k sin kx sin {a]:(2m+1)77-x]}
o k*—a? B 2 sin am

B
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2mr < x<(2m+2)w,  a being noninteger

S cos kx 7 COS h(qr—x) 1

~ 24 sinhar <
k§1 k442 2a sinham 142’ 0<x<27
§ coskx _ 1 g cosa[@m+1)m—x]
k=1 K2—a® 24% 2 a sin am i

2mr < x<(2m+2)7,  a being noninteger.
The explicit expressions for the matrix elements after
partial summation are too complex to be presented in this
paper and the interested readers are referred to [11] for
further details. Their computation on a digital computer is
efficient since only logical expressions and elementary
algebraic and transcendental functions are involved.

IV. NUMERICAL EXAMPLES AND SUPPORTING
MEASUREMENTS

A method for analyzing the electromagnetic problem of
a three-dimensional arbitrarily shaped body inside a rect-
angular waveguide has been presented. A Fortran IV
computer program was written for the numerical testing
of this approach. Measurements were also conducted to
compare with the theoretical prediction. Several cases
were studied and satisfactory results have been obtained.
Validation of the theory and the computer program was
achieved with numerical convergence tests as well as
direct comparison with measured data, which included
transmission-reflection characteristics and thermographic
heating patterns.

Three cases, as shown in Fig. 3, are presented in this
paper. All of the test cases consist of homogeneous dielec-
tric bodies with rectangular side walls aligned with the
waveguide walls. This choice of geometry conformal to
the Cartesian coordinates is mainly for the sake of sim-
plicity in data management and should not result in any
significant loss of generality as was noted in the free space
case [9]. For highly conductive obstacles, the surface
curvature of the obstacle plays a more important role and
therefore should be treated with greater discretion.

It was noted that the linear cell dimensions should be
A/2 (A being the free space wavelength divided by the
square root of the dielectric constant) or less in order to
yield accurate data. This observation had been reported in
the free space case studied by Livesay and Chen [9] and
later by Hagmann et al. [12]. Fig. 4 shows good agree-
ment in the reflection and transmission properties of Case
B between a 12-cell calculation and the measured data
using a model made of silica compound. A 12-cell calcula-
tion from Case A, being also a case of low diclectric
constant, yields a power reflection coefficient of 0.114 at
2.65 GHz, dropping down to 0.035 at 3.5 GHz, which was
verified experimentally with a paraffin wax model.

While 12 cells are sufficient for the calculation of Cases
A and B, many more cells are needed for Case C, which
has a high dielectric constant. Case C was originally
intended to be a phantom model for simulating muscle
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Fig. 3. Configurations of the three cases studied.
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Fig. 5. Comparison between measurements and calculations of various
numbers of cells for Case C of a high dielectric constant.

tissue. The model was made by mixing water, powdered
polyethylene, and “super stuff,” a modeling compound
manufactured by Wham-O Co., San Gabriel, CA. The
dielectric constant and loss tangent were then measured at
various frequencies. There were difficulties in achieving
and maintaining the desired dielectric properties of the
phantom model and, as a result, only the repeatable
measured data are shown in Fig. 5, in which comparisons
are also made for three calculations using different num-
bers of subvolume cells. The measured data in Fig. 5
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Fig. 7. Convergence of field distribution for Case C at 2.8 GHz with
high and medium dielectric constants.

agree reasonably with the calculation. The 12-cell config-
uration is obviously overly crude, yet the results are in
gross agreement with those of finer configurations. Note
that in the 45-cell calculation the y dimension of each cell
is 0.8833 cm, which is about 0.52A at 2.5 GHz and 0.68\ at
3.1 GHz. Convergence becomes more rapid when the
linear dimensions of the subvolume cells decrease to A/2
or less.

The rapidity of convergence of the present model ap-
proach is further illustrated in Figs. 6 and 7. Fig. 6 shows
the calculated power reflection and transmission
coefficients versus the number of cells used for the geome-
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try of Case C with two values of complex dielectric
constant. In Fig. 7, the field distribution inside the dielec-
tric body is compared for various numbers of subvolume
cells used in the calculation. It has been noted that the
convergence of field intensity is related to the profile of
the field. When the field varies slowly with the coordi-
nates, convergence is rapid. Fig. 7 presents typical situa-
tions with moderately varying fields. The favorable in-
fluence of the lower dielectric constant on the conver-
gence of the field distribution is clearly demonstrated.

Dielectric bodies of high dielectric constant require not
only a larger number of cells but also a greater number of
terms in the Green’s function series. This is due to the fact
that the distance between adjacent cells is small because
of the smaller size of the cells. The attenuation of higher
order modes, being independent of the dielectric constant,
decreases when the distances between adjacent cells
centers are shortened. As a result, the calculation cost for
cases of high dielectric constants increases rapidly with an
increase in dielectric constant.

V. CONCLUDING REMARKS

A general three-dimensional waveguide dielectric ob-
stacle has been successfully treated by employing the
moment method on an integral equation involving a dy-
adic Green’s function. This general method can be ap-
plied to a number of waveguide problems. An immediate
extension of this technique would be to ferromagnetic
obstacles. For highly conductive obstacles a surface-type
Green’s function may be more desirable.
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Method of Analysis and Filtering Properties of
Microwave Planar Networks

GUGLIELMO D’INZEO, FRANCO GIANNINI, CESARE M. SODI, axp ROBERTO SORRENTINO,
MEMBER, IEEE

Abstract—A method of analysis of planar microwave structures, based
on a field expansion in term of resonant modes, is presented. A first
advantage of the method consists in the possibility of taking into account
fringe effects by introducing, for each resonant mode, an equivalent model
of the structure. Moreover, the electromagnetic interpretation of the
filtering properties of two-port networks, particularly of the transmission
zeros, whose nature has been the subject of several discussions, is easily
obtaired. The existence of two types of transmission zeros, modal and
interaction zeros is pointed out. The first ones are due to the structure’s
resonances, while the second ones are due to the interaction between
resonant modes. Several experiments performed on circular and rectangu-
far microstrips in the frequency range 2-18 GHz have shown a good
agreement with the theory.

I. INTRODUCTION

FTER THE STUDY of the transmission properties
Aof microstrip lines, the great diffusion of microwave
integrated circuits has led to the analysis of general planar
circuits. To this purpose, analytical methods, applied to
structures of simple geometry [1}H{3], and numerical
methods, apt to the study of more complex geometries
[4]-[6], have been developed. In both cases a magnetic
wall model has been adopted for the structure because of
the formidable boundary value problems. In such a way,
however, one not only neglects the dispersion properties
of the circuit, which are due to fringe effects, but often
obtains erroneous results [7].

To overcome this difficulty, in the case of step discon-
tinuities, i.e., of structures with separable geometry in
rectangular coordinates, Menzel and Wolff [8] have re-
cently proposed a method of analysis based on the correc-
tion of the magnetic wall model by means of frequency
dependent effective parameters. However, it must be ob-
served that effective parameters depend not only on the
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Ricerche (C. N. R.), Italy.

The authors are with the Istituto di Elettronica, Universita di Roma,
Rome, Italy.

frequency, but also on the field distribution inside the
structure. It is sufficient to instance the disk resonators for
which Wolff and Knoppik [9] have shown a frequency
dependent equivalent model to exist for each resonant
mode, in such a way that a unique equivalent model for
the structure cannot be defined. This fact strongly limits
the applicability of all the analyses of microstrip struc-
tures presented until now. Considerable attention has
been devoted to nonuniform lines, i.e., lines with continu-
ously or not continuously varying cross sections. The
existence of transmission zeros has been stressed both
theoretically and experimentally. In the particular case of
a double step discontinuity, the physical nature of such
zeros has been discussed for a long time [2], [10]-{13] and
they have been ascribed to the excitation of higher order
modes of propagation in the line section between the two
discontinuities. As will be shown below, such an interpre-
tation, in our opinion, is not correct, also because trans-
mission zeros are present in generic nonuniform lines
where the EM field cannot propagate as exp (—jfB3z).

In this paper an analysis of planar circuits based on the
theory of resonant cavities is presented. Three important
advantages are so obtained. The first consists in the
possibility of introducing frequency dependent effective
parameters for each resonant mode of the structure in
such a way as to obtain an accurate characterization of its
frequency behavior. The second is an electromagnetic
interpretation of the network’s filtering properties, particu-
larly of the transmission zeros, is easily obtained and the
above mentioned problems are clarified. Finally, the pre-
sent method leads to the evaluation of the impedance
matrix of the network in the form of a partial fraction
expansion with the advantages pointed out by Silvester
[6].

The analysis is limited to the important case of two-port
networks, since the extension to the general case is
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