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Analysis of a Three-Dimensional Arbitrarily
Shaped Dielectric or Biological Body

Inside a Rectangular Waveguide

JOHNSON J. H. WANG, MEMBER, IEEE

Abstract—Tfds paper preaenta a method for the arrafysis of three-sfimen-

siomd arbitrarily shaped dielectric obstacles irs.c4de a reetangutar wave-

gnide. The numerical computation involves a dyadfc Green’s fsmetion

containing a donble infiite series, wbicln is evahrated by a partiaf snmma-

tion teefndqne.

I. INTRODUCTION

w

AVEGUIDE obstacles and discontinuities, includ-

ing the dielectric type to be discussed in this paper,

are long standing problems in electromagnetic theory.

Many of them, essentially two dimensional, have been

solked and were summarized by Marcuvitz [1]. The gen-

eral three-dimensional discontinuity problems, however,

remain unsolved in spite of the advent of modern high-

speed digital computers and the method of moments [2]

which permit treatment of problems not solvable by exact

methods. Upon reviewing the status of numerical tech-

niques for passive microwave devices, Silvester and

Csendes [3] observed in 1974, “not a single truly three-di-

mensional solution has been published” for waveguide
discontinuity problems. This statement is apparently still

vaiid today.

This lack of published research activities in three-dimen-

sional waveguide discontinuities has been in many cir-

cumstances due to the deficiencies of the Green’s func-

ticlns in the waveguide region. A dyadic Green’s function

for the rectangular waveguide was presented by Tai in

1972 [4] and later revised by the same author in 1973 [5].

Tai’s expression includes a double infinite series summing

over the contributions from all the individual waveguide

modes, Recalling the simple expression of the free space

Green’s function, one immediately recognizes the greater

complexity in the waveguide case.

This paper presents a successful use of the dyadic
Green’s function in the analysis of the electromagnetic

problem of a three-dimensional arbitrarily shaped dielec-

tric or biological body inside a rectangular waveguide. In

the process, the extremely slow convergence of the double

infinite series in the Green’s function had to be modified
by means of a partial sumation technique. The im-

mediate application of this new analytical technique is in
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Fig. 1. A three-dimensional arbitrarily shaped heterogeneous dielectric
body illuminated inside a rectangular waveguide.

microwave waveguide enzyme inactivation in neuro-chem-

ical research [6]. Extension of this technique to highly

conductive obstacles is feasible but may require modifica-

tion of the volume integral into a surface expression.

II. THE INTEGRAL EQUATION AND THE DYADIC

GREEN’S FUNCTION

The problem to be considered is shown in Fig. 1, in

which a three-dimensional arbitrarily shaped heteroge-

neous dielectric or biological body is electromagnetically

illuminated in a rectangular waveguide. The dielectric

body has a perrnittivity distribution of c(r), where r is a

positional vector. Outside the volume V occupied by the

dielectric body, the permittivity is homogeneous and is

denoted by .cI. Free space permeability PO is assumed for

both the dielectric body and the medium outside V.

The time function e ‘JO1, where t and u are time and

radian frequency, is used in all the equations in this paper

for ready comparison with Tai’s work [4], [5]. Since the

e’ut convention is perhaps more widely used, a comment

on the conversion of the equations to this convention is

justified at this point. For the d“’’” convention, one merely

changes to –j all thej’s appearing in the equations in this

paper.

In Fig. 1, E(r) denotes the electric field intensity at r

and E’(r) denotes the field intensity at r with the dielec-

tric body replaced by the medium cl. The scattered field is

defined as

Es(r) =E(r)– Ez(r). (1)

The volume equivalence principle can be shown to be

valid in the bounded as well as the unbounded space. As a

result, the problem as depicted in Fig. 1 is equivalent

everywhere to a homogeneous waveguide with cl, k, and

with volume current density

J(r)= –jo[t(r)– c,] E(r). (2)

0018-9480/78 /0700-0457$00.75 @ 1978 IEEE



458 IEEE TRANSACTIONS ON MICROWAVE THEORYAND TECHNIQmS,VOL.MTT-26, NO. 7, JULY 1978

It follows from the theorem of superposition that the

electric field radiated from Y(r) is equal to ~’(r). There-

fore,

where ~e is the dyadic Ch-een’s function of the electric

type and

Ge(r,r’) = Feo(r, r’) – -$228 (r,r’) (4)
1

where 8 denotes a three-dimensional Dirac delta function,—
1 denotes a unit vector along z, k, = a=, and G@Ois

defined below. The term involving 8 had not been in-

cluded in Tai’s earlier work [4] until 1973 [5] ayd has been

a subject of recent discussions [5], [7], [8]. G,O was not

explicitly expressed in the literature except by Rahmat-

Samii [7]. However, Rahmat-Samii’s expression has a

number of errors in the print. For the clarity of the

present discussion and the convenience of future refer-

ences, it is desirable to present it in the following long

form:
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where

{
1, ifn=O

Eon=
2, otherwise

r= field point= (xjy, z)

r’= source point = (x’,y’, z’)

[

k = l(k~- k~)’1’1, if knn is real
mn

jl(k~ – k~) 1’21, if km. is imaginary

where

Equations (l)-(4) can be manipulated to yield the

following integral equation:

J= (r)2
+ — = –E’(r) (6)

jm(r)

where J= is the z component of J. The unknown J in (6)

can then be solved by the method of moments [2] which

transforms the integral equation into a set of linear equa-

tions readily solvable by means of a digital computer.

111. SOLUTIOF.JBY THE METHOD OF MOMENTS

Although there exists a number of methods by which an

integral equation can be solved numerically, the complex-

ity of three-dimensional geometry can hardly tolerate fur-

ther complication in the computational process. Even in

the much simpler case of plane wave incidence and un-

bounded free space, only point matching together with

rectangularly sided cells has been attempted for the

volume type of integral equation [9]. Fortunately, this

unsophisticated process has been found to be capable of

producing good numerical results. Thus point matching
with rectangularly sided cells is employed in the present

analysis.

The volume Y occupied by the dielectric body is first

divided into L equal rectangular-sided cells A VI–A P’L,

each of which has constant dimensions Ax, Ay, and Az.

The electric field, assumed to be uniform inside the lth
cdl, is designated as E (r-l), where t-l represents the center

of the lth cell. The equivalent current in (2) can then be

expressed as

where Blk is a basis function defined as

B! (r)= z2kP{(r), k=l,2,30rx,y, z (8)

ti~ in (8) denotes a unit vector, and

(p(r)= 1’ for r h A V1

o,
(9)

elsewhere.
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The weighting function is defined as

q(r)= 8 (r–rq)tip, p=l,2,3. (lo)

The scalar product between j and g is defined as

(fg) = ~vtg dv. (11)

We can generate a set of linear equations by first

substituting (7) into (6) and then performing a scalar

product on the resulting equation with the weighting func-

tion of (10) for p= 1,2,3 and q= 1,s .0 ,L. This moment

generating procedure leads to the following set of equa-

tions:

~ ~ J}A&= C“, p=l,2,3; q=l,. o., L (12)
k=ll=l

where

Cp’ = – ~’ (rq) (13)

tlf in (14) is the Kronecker delta, being 1 whenp = q and O
otherwise, and

where G# is the (p, k) component of the dyad

integration in (15) can be carried out to yield

(15)

G.O, The

(16)

where

[F’pk= the (m, n)th term of @~] .e ‘~k..l% -zdmn (17)

4ab sin ‘rA~[ sin m~A Y[Q.— _
nvm~ 2a 2b

(18)

and 1 in (16) depends on the index pk. For pk being (1,3),

(2, 3), (3, 1), (3, 2), where (1, 2,3) corresponds to (x,y, z), we

have

[

Az,

()

Azl
& 4eJkmnkz// sin k — ,

k inn 2
ifzq3zl+—

2
I= “’”

# eJk””A”/2 sin [k~n(zq– Z1)], otherwise.
mn

(19)

IFor other pk indices, we have
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Fig. 2. Comparison of convergence between direct truncation and par-
tial summation.

As can be seen in (14)–(20), the matrix element A&

involves a double infinite series which does not converge

rapidly unless IZq– Zll is large. When p = q as is the case

for the self cells which are the diagonal matrix elements

I,zq- Z[l =0 and the series convergence is extremely slow.

As an example, Fig. 2 shows that no sign of convergence

is exhibited even after 140x 140 terms are used in the

summation. Thus the computation of the matrices can not

be carried out by a simple truncation of the series.

This computational difficulty can be surmounted by

direct summation of the part of the infinite series which

contains terms nonvanishing with increasing M and N.

This partial summation transforms a matrix element of a

double infinite series into a single infinite series or even

into an expression of closed form, which can be truncated

for computation. Fig. 2 shows that convergence is

achieved with about 20x 20 terms for the partial-summa-

tion technique, which is significant improvement over the

direct truncation method. For most off-diagonal mal,rix

elements, direct truncation is satisfactory because of the

predominant influence of the exponential terms with the

argument of jk~. Izq – ZII or jk,..AzI/2 as shown in (19)

and (20). As a result of these exponential terms which

rapidly decrease with m and n, off-diagonal matrices with

nonvanishing Izl – ZqI can be computed with a finite series

truncated according to a precision criterion established by

the value of jk~. Izq – Zlj. Depending on the value of lz~ –

z, 1,approximately 16X 8 up to 21 X 12 terms were used for

m and n in the examples reported in this paper.
The partial summation technique is tedious but

straightforward. The portion of the infinite series which

consists of terms slowly convergent with m and n are

summed by means of the following formulas [10]:

w sink.x_ v-x
2 ~-~, [o<x<z~]

k=l

w k sinka =x ‘inha(n–x)
z a2>0, O<x<21T

k=l k2-t-a2 2 sin ha~ ‘

W ksinkx=
2

sin {a[(2m+l)n-x]}
z’

k=() k2–a2 2 sin av ‘
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2m~ < x <(2m+2)7r, a being noninteger

w COS kx
z

~ coslZ(7r-x) 1
— .— —— 0< X<2T

kel k2+a2 2a sin ham 2a2 ‘

m COS kx
2

1 ~ cosa[(2m+l)7r-x]
— .—

k=l k2–a2 2a2 – ~
9

a sin a7r

2m7r < x <(2m+2)w, a being noninteger.

The explicit expressions for the matrix elements after

partial summation are too complex to be presented in this

paper and the interested readers are referred to [11] for

further details. Their computation on a digital computer is

efficient since only logical expressions and elementary

algebraic and transcendental functions are involved.

IV. NUMERICAL EXAMPLES AND SUPPORTING

MEASUREMENTS

A method for analyzing the electromagnetic problem of

a three-dimensional arbitrarily shaped body inside a rect-

angular waveguide has been presented. A Fortran IV

computer program was written for the numerical testing

of this approach. Measurements were also conducted to

compare with the theoretical prediction. Several cases

were studied and satisfactory results have been obtained.

Validation of the theory and the computer program was

achieved with numerical convergence tests as well as

direct comparison with measured data, which included

transmission-reflection characteristics and thermographic

heating patterns.

Three cases, as shown in Fig. 3, are presented in this

paper. All of the test cases consist of homogeneous dielec-

tric bodies with rectangular side walls aligned with the

waveguide walls. This choice of geometry conformal to

the Cartesian coordinates is mainly for the sake of sim-

plicity in data management and should not result in any

significant loss of generality as was noted in the free space

case [9], For highly conductive obstacles, the surface

curvature of the obstacle plays a more important role and

therefore should be treated with greater discretion.

It was noted that the linear cell dimensions should be

A/2 (A being the free space wavelength divided by the

square root of the dielectric constant) or less in order to

yield accurate data. This observation had been reported in

the free space case studied by Livesay and Chen [9] and

later by Hagmann et al. [12]. Fig. 4 shows good agree-

ment in the reflection and transmission properties of Case

B between a 12-cell calculation and the measured data

using a model made of silica compound. A 12-cell calcula-

tion from Case A, being also a case of low dielectric

constant, yields a power reflection coefficient of 0.114 at

2.65 GHz, dropping down to 0.035 at 3.5 GHz, which was

verified experimentally with a paraffin wax model.

While 12 cells are sufficient for the calculation of Cases
A and B, many more cells are needed for Case C, which

has a high dielectric constant. Case C was originally

intended to be a phantom model for simulating muscle

EEsiEEE
‘r = mlat.ve dielectric constant at 2.65 GHZ

dx, dy, dz, S ,. cm.

Fig. 3. Configurations of the three cases studied.
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Fig. 4. Comparison between calculated and measured reflection and
transmission characteristics for Case B of Fig. 3 which is of low
dielectric constant.
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Fig. 5. Comparison between measurements and calculations of various
numbers of cells for Case C of a high dielectric constant.

tissue. The model was made by mixing water, powdered

polyethylene, and “super stuff,” a modeling compound

manufactured by Wham-O Co., San Gabriel, CA. The

dielectric constant and loss tangent were then measured at

various frequencies. There were difficulties in achieving

and maintaining the desired dielectric properties of the

phantom model and, as a result, only the repeatable
measured data are shown in Fig. 5, in which comparisons

are also made for three calculations using different num-

bers of subvolume cells, The measured data in Fig. 5
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Fig. 7. Convergence of field distribution for Case C at 2.8 GHz with
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agree reasonably with the calculation. The 12-cell config-

uration is obviously overly crude, yet the results are in

gross agreement with those of finer configurations. Note
that in the 45-cell calculation they dimension of each cell

is 0.8833 cm, which is about 0.52X at 2.5 GHz and 0.68A at

3.1 GHz. Convergence becomes more rapid when the

linear dimensions of the subvolume cells decrease to A/2

or less.

The rapidity of convergence of the present model ap-

proach is further illustrated in Figs. 6 and 7. Fig. 6 shows
the calculated power reflection and transmission

coefficients versus the number of cells used for the geome-
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try of Case C with two values of complex dielectric

constant. In Fig. 7, the field distribution inside the dielec-

tric body is compared for various numbers of subvolume

cells used in the calculation. It has been noted that the

convergence of field intensity is related to the profile of

the field. When the field varies slowly with the coordi-

nates, convergence is rapid. Fig. 7 presents typical situa-

tions with moderately varying fields. The favorable in-

fluence of the lower dielectric constant on the conver-

gence of the field distribution is clearly demonstrated.

Dielectric bodies of high dielectric constant require not

only a larger number of cells but also a greater number of

terms in the Green’s function series. This is due to the fact

that the distance between adjacent cells is small because

of the smaller size of the cells. The attenuation of higher

order modes, being independent of the dielectric constant,

decreases when the distances between adjacent cells

centers are shortened. As a result, the calculation cost for

cases of high dielectric constants increases rapidly with an

increase in dielectric constant.

V. CONCLUDING Rmmucs

A general three-dimensional waveguide dielectric

stacle has been successfully treated by employing

moment method on an integral equation involving a

adic Green’s function. This general method can be

bo -

the

dy-

ap-

plied to a number of waveguide problems. An immediate
extension of this technique would be to ferromagnetic

obstacles. For highly conductive obstacles a surface-type

Green’s function may be more desirable.
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Method of Analysis and Filtering Properties of
Microwave Planar Networks

GUGLIELMO DINZEO, FRANCO GIANNINI, CESARE M. SODI, AND ROBERTO SORRENTINO,

MEMBER, IEEE

Abstract—A method of analysis of planar microwave structures, based

on a field expansion in term of resonant modes, is presented. A first

advantage of the method consists in the possibtity of taking into account

fringe effects by introducing, for each resonant mode, asseqoivafent model

of the structure. Moreover, the electromagnetic interpretation of the

filtering properties of two-port networks, particularly of the transmission

zeros, whose nature has been the subject of several discussions, is easily

obtained. The existence of two types of transmission zeros, modaf and

interaction zeros is pointed out. The fiit ones are due to the structure’s

resonances, while the seeond ones are due to the interaction between

resonant modes. Severaf experiments performed on circnfar and rectangn-

Iar microstrips in the frequency range 2-18 GHz have shown a good

agreement with the theory.

I. INTRODUCTION

A FTER THE STUDY of the transmission properties

of microstrip lines, the great diffusion of microwave

integrated circuits has led to the analysis of general planar

circuits. To this purpose, analytical methods, applied to

structures of simple geometry [1 ]–[3], and numerical

methods, apt to the study of more complex geometries

[4]-[6], have been developed. In both cases a magnetic

wall model has been adopted for the structure because of

the formidable boundary value problems. In such a way,

however, one not only neglects the dispersion properties

of the circuit, which are due to fringe effects, but often

obtains erroneous results [7].

To overcome this difficulty, in the case of step discon-
tinuities, i.e., of structures with separable geometry in

rectangular coordinates, Menzel and Wolff [8] have re-

cently proposed a method of analysis based on the correc-

tion of the magnetic wall model by means of frequency

dependent effective parameters. However, it must be ob-

served that effective parameters depend not only on the

Manuscript received May 16, 1977; revised December 7, 1977. This
work has been supported in part by the Consiglio Nazionale delle
Ricerche (C. N. R.), Italy.

The authors are with the Istituto di Elettronica, Universit~ di Roma,
Rome, Italy.

frequency, but also on the field distribution inside the

structure. It is sufficient to instance the disk resonators for

which Wolff and Knoppik [9] have shown a frequency

dependent equivalent model to exist for each resonant

mode, in such a way that a unique equivalent model for

the structure cannot be defined. This fact strongly limits

the applicability of all the analyses of rnicrostrip struc-

tures presented until now. Considerable attention has

been devoted to nonuniform lines, i.e., lines with continu-

ously or not continuously varying cross sections. The

existence of transmission zeros has been stressed both

theoretically and experimentally. In the particular case of

a double step discontinuity, the physical nature of such

zeros has been discussed for a long time [2], [ 10]–[ 13] and

they have been ascribed to the excitation of hi@er order

modes of propagation in the line section between the two

discontinuities. As will be shown below, such an interpre-

tation, in our opinion, is not correct, also because trans-

mission zeros are present in generic nonuniform lines

where the EM field cannot propagate as exp ( –j~z).

In this paper an analysis of planar circuits based on the

theory of resonant cavities is presented. Three important

advantages are so obtained. The first consists in the

possibility of introducing frequency dependent effective

parameters for each resonant mode of the structure in

such a way as to obtain an accurate characterization of its
frequency behavior. The second is an electromagnetic

interpretation of the network’s filtering properties, particu-

larly of the transmission zeros, is easily obtained and the

above mentioned problems are clarified. Finally, the pre-

sent method leads to the evaluation of the impedance

matrix of the network in the form of a partial fraction

expansion with the advantages pointed out by Silvester

[6].

The analysis is limited to the important case of two-port

networks, since the extension to the general case is
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